Answer:
The rate at which the population decrease is 59.8 %
Step-by-step explanation:
Given as :
The population of city = 30,31,000
Now The population of city decrease to 22,46,000
The time period in which population decrease is 50 years
Let the percentage rate of decrease = R%
So,
Final population = initial population × [tex](1-\frac{Rate}{100})^{Time}[/tex]
Or, 22,46,000 = 30,31,000 × [tex](1-\frac{Rate}{100})^{50}[/tex]
Or, [tex]\frac{2246000}{3031000}[/tex] = [tex](1-\frac{Rate}{100})^{50}[/tex]
Or, [tex]\frac{2246}{3031}[/tex] = [tex](1-\frac{Rate}{100})^{50}[/tex]
[tex](\frac{2246}{3031})^{\frac{1}{50}}[/tex] = [tex]( 1-\frac{Rate}{100})[/tex]
So , 0.99402 = [tex]( 1-\frac{Rate}{100})[/tex]
Or, [tex]\frac{Rate}{100}[/tex] = 1 - 0.99402
So, Rate = [tex]5.98\times 10^{-3}[/tex] × 100
Or, Rate = 0.598 = 59.8 %
Hence The rate at which the population decrease is 59.8 % Answer