Four rods that obey Hooke's law are each put under tension. (a) A rod 50.0 cm long with cross-sectional area 1.00 mm2 and with a 200 N force applied on each end. A rod 25.0 cm long with cross-sectional area 1.00 mm2 and with a 200 N force applied on each end. .00 mm2 and with a 100 N on each end. (c) A rod 20.0 cm long with cross-sectional area 2 force applied Order the rods according to the tensile stress on each rod, from smallest to largest. Oc

Respuesta :

Answer:

   c <  a = b

Explanation:

to arrange tensile stress from smallest to largest

tensile stress = [tex]\sigma = \dfrac{F}{A}[/tex]

a) A rod 50.0 cm long with cross-sectional area 1.00 mm² and with a 200 N force applied on each end.

      [tex]\sigma = \dfrac{F}{A}[/tex]

      [tex]\sigma = \dfrac{200}{1}[/tex]

      [tex]\sigma = 200\ Mpa[/tex]

b) A rod 25.0 cm long with cross-sectional area 1.00 mm² and with a 200 N force applied on each end.

      [tex]\sigma = \dfrac{F}{A}[/tex]        

      [tex]\sigma = \dfrac{200}{1}[/tex]

      [tex]\sigma = 200\ Mpa[/tex]

c) A rod 20 cm long with cross-sectional area 2.00 mm² and with a 100 N force applied on each end.

      [tex]\sigma = \dfrac{F}{A}[/tex]

      [tex]\sigma = \dfrac{100}{2}[/tex]

      [tex]\sigma = 50\ Mpa[/tex]

hence the order comes out to be

   c <  a = b