Answer:
0.881 kilograms
Explanation:
Mass of [tex]Cu[/tex] = 305 g
Molar mass of [tex]Cu[/tex] = 63.546 g/mol
The formula for the calculation of moles is shown below:
[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]
Thus,
[tex]Moles= \frac{305\ g}{63.546\ g/mol}[/tex]
Moles of [tex]Cu[/tex] = 4.8 moles
Since in the formula of [tex]CuFeS_2[/tex],
1 mole of copper is present in 1 mole of [tex]CuFeS_2[/tex]
So,
4.8 mole of copper is present in 4.8 mole of [tex]CuFeS_2[/tex]
Moles of [tex]CuFeS_2[/tex] = 4.8 moles
Molar mass of [tex]CuFeS_2[/tex] = 183.53 g/mol
The formula for the calculation of moles is shown below:
[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]
Thus,
[tex]4.8\ moles= \frac{Mass}{183.53\ g/mol}[/tex]
Moles of [tex]CuFeS_2[/tex] = 881 g
Also, 1 g = 0.001 kg
So,
0.881 kilograms of chalcopyrite must be mined to obtain 305 g of pure Cu.