Respuesta :

Answer:

[tex]P(x) =  x^{3}  - 2x^{2} -3x + 6[/tex] is the desired polynomial.

Step-by-step explanation:

The roots of the  polynomial is [tex]\sqrt{3}, -\sqrt{3}[/tex]  and 2.

Hence, the zeroes of the polynomial with respective roots is:

[tex](x - \sqrt{3}), (x + \sqrt{3} ) and (x -2)[/tex]

Now, if we multiply all the zeroes, we get the desired polynomial.

[tex]P(x) = (x - \sqrt{3})(x + \sqrt{3} )(x -2)[/tex]

or, [tex]P(x) =  (x^{2}  - 3)(x-2) = x^{3}  - 2x^{2} -3x + 6[/tex]

or, [tex]P(x) =  x^{3}  - 2x^{2} -3x + 6[/tex]

Hence, option D is the correct option.