Consider the following hypothesis test H0 p 20 Ha p 20 A sample of 400 provided a sample proportion p 175 a Compute the value of the test statistic to 2 decimals 1.25 b What is the p value to 4 decimals 0.2113 c Using α 05 can you conclude that the population proportion is not equal to 20 Answer the next three questions using the critical value approach d Using α 05 what is the critical value for the test statistic to 2 decimals or 1.96 e State the rejection rule Reject H0 if z is

Respuesta :

Answer:

a) -1.25

b) 0.2112

c) -1.96

Step-by-step explanation:

Data provided in the question:

Sample size, n = 400

H0 : p = 20

[tex]\bar{p}[/tex] = 175

Now,

a) The test statistic is  given as:

Z = [tex]\frac{(\bar{p}-p)}{\sqrt{\frac{p(1-p)}{n}}}[/tex]

on substituting the respective values, we get

Z = [tex]\frac{(0.175-0.2)}{\sqrt{\frac{0.2\times0.8}{400}}}[/tex]

= -1.25

b) The p-value = 2 × P(Z <-1.25)

Now from the standard normal table

P(Z <-1.25) = 10.56% = 0.1056

Thus,

p-value = 2 × 1056 = 0.2112

c) for a = 0.05,

the critical value is [tex]Z_{\frac{a}{2}}=Z_{\frac{0.05}{2}}[/tex] i.e [tex]Z_{0.025}[/tex]

Now from standard normal table

[tex]Z_{0.025}[/tex] = -1.96