Answer:
After 80 years 432 pounds of radioactive element will be remaining.
Step-by-step explanation:
A function [tex]A_{t}=A_{0}e^{-0.0077x}[/tex] models the amount of a radioactive material.
Here x = number of years taken for decay.
If [tex]A_{t}=432[/tex] pound and [tex]A_{0}=800[/tex] pound, then we have to calculate the time for decay.
[tex]A_{t}=A_{0}e^{-0.0077x}[/tex]
[tex]432=800e^{-0.0077x}[/tex]
[tex]e^{-0.0077x}=\frac{432}{800}[/tex]
Take log on both the sides of the equation
[tex]ln(e^{-0.0077x})=ln(\frac{432}{800} )[/tex]
-0.0077x = ln(0.54)
-0.0077x = -0.616186
x = [tex]\frac{0.616186}{0.0077}[/tex]
x = 80.02 years
Therefore, After 80 years 432 pounds of radioactive element will be remaining.