Respuesta :
Step-by-step explanation:
1+sinx/cosx = cosx/1/sinx
➡
cosx•cosx = (1+sinx)(1-sinx)
➡
cos^2x = 1- sinx +sinx -sin^2x
➡
cos^2x = 1 -sin^2x
➡
cos^2x + sin^2x = 1
Answer:
Step-by-step explanation:
1+sinx / cosx = cos x / 1-sinx
Cross multiply across the equation,
(1+sinx)(1-sinx) = cosx × cosx= cos^2x
Opening the bracket, we have
1 -sinx + sinx - sin^2x =cos^2x
1- sin^2x =cos^2x ---------------1
Recall that sin^2x + cos^2x =1
Therefore, from eqn 1,
1 = cos^2x + sin^2x
So
1+sinx / cosx = cos x / 1-sinx is correct
Note:
cos^2x means cos square x
sin^2x means sin square x