Respuesta :

Answer:

its 152 i know cause i just did this....

Step-by-step explanation:

Answer:

An exponential function is in the general form   [tex]\mathrm{y}=\mathrm{a}(\mathrm{b})^{\mathrm{x}}[/tex]

Explanation:

(x,y) = (-1,4/3) and (x,y)=  (3,108) are the given functions  

Therefore,  

    [tex]\frac{4}{3}=a(b)^{-1}=\frac{a}{b}[/tex]

        [tex]\frac{4}{3}=\frac{a}{b}[/tex]  - eq(1)

           [tex]108=a(b)^{3}=a b^{3}=108-e q(2)[/tex]

Multiply both sides of the first equation by b to find that

       [tex]\frac{4}{3} b=a[/tex]

Substituting in eq-2 we get

      [tex]\frac{4}{3} b^{4}=108[/tex]

    [tex]b^{4}=81[/tex]

  [tex]\mathrm{b}=\pm 3[/tex]

  [tex]\mathrm{b}=+3, \text { then } 108=\mathrm{a}(3)^{3}[/tex]

which gives a = 4,  

henceforth the equation becomes as   [tex]\mathrm{y}=4(3)^{\mathrm{x}}[/tex]

    [tex]\mathrm{b}=-3 \text { then } 108=\mathrm{a}(-3)^{3}[/tex]

which gives a = -4,  

henceforth the equation becomes as y =  [tex]-4(-3)^{x}[/tex]

However! In an exponential function, b>0, otherwise many issues arise when trying to graph the function.

The only valid function is  [tex]4(3)^{x}[/tex]