If T = 10x^2/y, then log T is equivalent to
(1 + 2log x) – log y
log(1 + 2x) – log y
(1 - 2log x) + log y
2(1 - log x) + log y

Respuesta :

logT = 1 + 2log(x) - log(y)

Step-by-step explanation:

   Given [tex]T=\frac{10x^{2} }{y}[/tex].

We need to evaluate [tex]logT[/tex]. Let us apply logarithm on both sides of the above equation.

[tex]logT=log(\frac{10x^{2} }{y})[/tex]

We know that [tex]log(ab)=log(a)+log(b)[/tex] and [tex]log(\frac{a}{b})=log(a)-log(b)[/tex], [tex]log(a^{b})=(b)log(a)[/tex].

Hence, [tex]logT=log10+log(x^{2})-log(y)[/tex]

∴ [tex]logT=1+2log(x)-log(y)[/tex]