Goal F: I can write an equation from two points.
Write an equation of the line that passes through the points given.
8. (1,5) and (4, -2)
9. (2, -1) and (-5,-5)
10.
(0,3) and (4,0)​

Respuesta :

Answer:

8. [tex]y=-\frac{7}{3}(x-1)+5[/tex]

9. [tex]y=\frac{4}{7}(x-2)-1[/tex]

10. [tex]y=-\frac{3}{4}x+3[/tex]

Step-by-step explanation:

The equation of a line passing through points [tex](x_{1},y_{1})[/tex] and [tex](x_{2},y_{2})[/tex] is given as:

[tex]y-y_{1}=(\frac{y_{2}-y_{1}}{x_{2}-x_{1}})(x-x_{1})[/tex]

For #8:

[tex](x_{1},y_{1})[/tex] is [tex](1,5)[/tex] and [tex](x_{2},y_{2})[/tex] is [tex](4, -2)[/tex].

Now, plug in these values and find the equation of the line. This gives,

[tex]y-5=(\frac{-2-5}{4-1})(x-1)\\y-5=(\frac{-7}{3})(x-1)\\y=-\frac{7}{3}(x-1)+5[/tex]

Therefore, the equation of a line passing through [tex](1,5)[/tex] and [tex](4, -2)[/tex] is [tex]y=-\frac{7}{3}(x-1)+5[/tex].

For #9:

[tex](x_{1},y_{1})[/tex] is [tex](2,-1)[/tex] and [tex](x_{2},y_{2})[/tex] is [tex](-5, -5)[/tex].

Now, plug in these values and find the equation of the line. This gives,

[tex]y-(-1)=(\frac{-5-(-1)}{-5-2})(x-2)\\y+1=\frac{-5+1}{-7}(x-2)\\y+1=(\frac{-4}{-7})(x-2)\\y=\frac{4}{7}(x-2)-1[/tex]

Therefore, the equation of a line passing through [tex](2,-1)[/tex] and [tex](-5, -5)[/tex] is [tex]y=\frac{4}{7}(x-2)-1[/tex].

For #10:

[tex](x_{1},y_{1})[/tex] is [tex](0,3)[/tex] and [tex](x_{2},y_{2})[/tex] is [tex](4, 0)[/tex].

Now, plug in these values and find the equation of the line. This gives,

[tex]y-3=(\frac{0-3}{4-0})(x-0)\\y-3=(\frac{-3}{4})(x)\\y=-\frac{3}{4}x+3[/tex]

Therefore, the equation of a line passing through [tex](0,3)[/tex] and [tex](4, 0)[/tex] is [tex]y=-\frac{3}{4}x+3[/tex].