Respuesta :
Answer
given,
mass of the uniform cylinder = 575 Kg
diameter = 1.20 m
angle of the slope = 48.0°
acceleration of the log = ?
[tex]I_{com}=\dfrac{1}{2}MR^2[/tex]
acceleration =
[tex]a =\dfrac{-g sin \theta}{1 + \dfrac{I_{com}}{MR^2}}[/tex]
[tex]a =\dfrac{-9.8\times sin 48^0}{1 + \dfrac{0.5MR^2}{MR^2}}[/tex]
[tex]a =\dfrac{-9.8\times sin 48^0}{1 + 0.5}[/tex]
a = -4.86 m/s²
negative direction of x- axis
frictional force
[tex]f_s = \dfrac{-I_{com} a}{R^2}[/tex]
[tex]f_s = \dfrac{-\dfrac{1}{2}MR^2 a}{R^2}[/tex]
[tex]f_s = -0.5 Ma[/tex]
[tex]f_s = -0.5\times 575 \times (-4.86) [/tex]
[tex]f_s = 1397.25 N[/tex]
c) It is a static friction
The acceleration of the logs down the hill will be at a constant rate given
that the hill has a constant slope.
Part 1: The acceleration of the logs as they roll down the mountain, a is approximately 4.86 m/s²
Part 2: The friction force on the rolling logs is approximately 1,397.3 N
Part 3: The friction force is static
Reasons:
Given parameters are;
Inclination of the slope, θ = 48°
Part 1;
The torque of the log, τ = M·g·sin(θ)·R
τ = I × α
[tex]I = \dfrac{2}{3} \cdot M \cdot R^2[/tex]
[tex]\alpha = \dfrac{M \cdot g \cdot sin(\theta) \cdot R}{ \dfrac{3}{2} \cdot M \cdot R^2} = \dfrac{2 \cdot g \cdot sin(\theta) }{ 3 \cdot R}[/tex]
a = α ×R
Therefore;
[tex]a = \dfrac{2 \cdot g \cdot sin(\theta) }{ 3 \cdot R} \times R = \dfrac{2 \cdot g \cdot sin(\theta) }{ 3 }[/tex]
Which gives;
[tex]The \ acceleration \ of \ the \ logs, \ a = \dfrac{2 \cdot g \cdot sin(48 ^{\circ}) }{ 3 } \approx 4.86 \, m/s^2[/tex]
The acceleration of the logs as they roll down the mountain, a ≈ 4.86 m/s²
Part 2:
Friction force, force, [tex]F_f[/tex] × R = [tex]I_{cm}[/tex] × α
[tex]I_{cm}[/tex] = The moment of inertia about the center of mass = [tex]\dfrac{1}{2} \cdot M \cdot R^2[/tex]
Therefore;
[tex]F_f = \dfrac{I_{cm} \cdot \alpha}{R} = \dfrac{\left(\dfrac{1}{2} \cdot M \cdot R^2 \right) \times \left(\dfrac{2 \cdot g \cdot sin(\theta) }{ 3 \cdot R}\right)}{R} = \dfrac{M \cdot g \cdot sin(\theta) }{ 3 }[/tex]
Therefore;
- [tex]F_f = \dfrac{575 \times 9.81 \times sin(48^{\circ}) }{ 3 } \approx 1,397.3[/tex]
The friction force on the rolling logs, [tex]F_f[/tex] ≈ 1,397.3 N
Part 3
The logs are rolling without slipping, therefore, the friction force acting is static friction force
Learn more here:
https://brainly.com/question/9485953