Answer:
1.5 Times.
Explanation:
The first step in order to solve the problem is to define our values, from this we can proceed to find the apparent brightness relationship for the two objects,
So,
[tex]B_i = \frac{L}{4 \pi R^2}[/tex]
B=Apparent Brightness
L= Luminosity
R=Radius
Then,
[tex]\frac{B_{Berelgeuse}}{B_{Sirius}} = \frac{\frac{L_{Betelgeuse}}{4\pi (D_{Betelgeuse})^2}}{\frac{L_{Sirius}}{4\pi (D_{Sirius})^2}}[/tex]
[tex]\frac{B_{Berelgeuse}}{B_{Sirius}} = \frac{\frac{1.1*10^{10}*L_{sun}}{4\pi (643)^2}}{\frac{26L_{Sun}}{4\pi(8.6)^2}}[/tex]
[tex]\frac{B_{Berelgeuse}}{B_{Sirius}} = \frac{1.1*10^{10}}{643^2}*\frac{8.6^2}{26}[/tex]
[tex]\frac{B_{Berelgeuse}}{B_{Sirius}} = 15682.3[/tex]
[tex]B_{Betelgeuse} = 15682.3B_{Sirius}[/tex]
Under this relationship we can conclude that in the case of a Supernova, in our sky Betelgeuse Supernova would be [tex]1.5 * 10 ^ 4[/tex] times brighter than Sirius seen from the earth to the sky.