Answer:
(a) 0.119
(b) 0.1699
Solution:
As per the question:
Mean of the emission, [tex]\mu = 11.7[/tex] million ponds/day
Standard deviation, [tex]\sigma = 2.8[/tex] million ponds/day
Now,
(a) The probability for the water pollution to be at least 15 million pounds/day:
[tex]P(X\geq 15) = P(\frac{X - /mu}{\sigma} \geq \frac{15 - 11.7}{2.8})[/tex]
[tex]P(X\geq 15) = P(Z \geq 1.178)[/tex]
[tex]P(X\geq 15)[/tex] = 1 - P(Z < 1.178)
Using the Z score table:
[tex]P(X\geq 15)[/tex] = 1 - 0.881 = 0.119
The required probability is 0.119
(b) The probability when the water pollution is in between 6.2 and 9.3 million pounds/day:
[tex]P(6.2 < X < 9.3) = P(\frac{6.2 - 11.7}{2.8} < \frac{X - \mu}{\sigma} < \frac{9.3 - 11.7}{2.8})[/tex]
[tex]P(6.2 < X < 9.3) = P(- 1.96 < Z < - 0.86)[/tex]
[tex]P(6.2 < X < 9.3) = P(- 1.96 < Z < - 0.86)[/tex]
P(Z < - 0.86) - P(Z < - 1.96)
Now, using teh Z score table:
0.1949 - 0.025 = 0.1699