A) In the case of the Boundary Thickness Layer we use the given formula,
[tex]\delta = \frac{4.91x}{\sqrt{Re}}[/tex]
We know as well that,
Re = Número de Reynolds = [tex]\frac{U*x}{\upsilon}[/tex]
Where,
U = velocity
[tex]\upsilon[/tex] = kinematic viscosity
For water, kinematic viscosity, [tex]\upsilon = 1.21*10^{-5} ft^2 /s[/tex]
So, [tex]500,000 = \frac{ 17x}{(1.21*10^{-5})}[/tex]
[tex]x = 0.355 ft[/tex]
[tex]d = \frac{4.91*0.355}{\sqrt {500000}}[/tex]
[tex]d = 0.002465 ft = 0.029in[/tex]
B) For flat plate boundary layer. Given the Critical Reynolds Number.= 5*10^5 we know that is equal to Re above.
Thus, [tex]x = 0.355 ft[/tex]
C. Wall shear stress,
[tex]\tau = \mu*\sqrt{ U^3 / (2*\nu*x) }[/tex]
For water, dynamic viscosity, [tex]\nu[/tex] = 2.344*10^-5 lbf-s/ft^2
[tex]\tau = 2.344*10^-5 \sqrt {17^3 / (2*1.21*10^{-5}*0.355)}[/tex]
[tex]\tau = 0.5605 lbf/ft^2[/tex]