If the atomic radius of an FCC metal is 0.143nm and its atomic weight is 26.98 g/mol, 1. What is the length of its unit cell in nm and cm? 2. What is the volume in cubic nanometers and cubic centimeters? 3. What is the density of the metal in g/cc?

Respuesta :

Answer:

Edge length = 0.40446 nm = [tex]4.0446\times 10^{-8}\ cm[/tex]

Volume = 0.06617 nm³ = [tex]6.617\times 10^{-23}\ cm^3[/tex]

[tex]\rho=2.708\ g/cm^3[/tex]

Explanation:

Given that:

The radius = 0.143 nm

For FCC,

[tex]Edge\ length=\frac {4}{\sqrt {2}}\times radius[/tex]

Thus,

[tex]Edge\ length=\frac{4}{\sqrt {2}}\times 0.143\ nm=2\sqrt{2}\times \:0.143\ nm=0.40446\ nm[/tex]

Edge length = 0.40446 nm

Also, 1 nm = [tex]10^{-7}[/tex] cm

So,

Edge length = [tex]4.0446\times 10^{-8}\ cm[/tex]

Volume = [tex]{(Edge\ length)}^3={0.40446}^3\ nm^3=0.06617\ nm^3[/tex]

Volume = 0.06617 nm³

Also, 1 nm³ = [tex]10^{-21}[/tex] cm³

Volume = [tex]6.617\times 10^{-23}\ cm^3[/tex]

The expression for density is:

[tex]\rho=\frac {Z\times M}{N_a\times {Volume}}[/tex]

[tex]N_a=6.023\times 10^{23}\ {mol}^{-1}[/tex]

M is molar mass = 26.98 g/mol

For FCC , Z= 4

Thus,

[tex]\rho=\frac {4\times 26.98\ g/mol}{6.023\times 10^{23}\ {mol}^{-1}\times 6.617\times 10^{-23}\ cm^3}[/tex]

[tex]\rho=\frac {107.92}{10^{-23}\times \:10^{23}\times \:6.023\times \:6.617}\ g/cm^3[/tex]

[tex]\rho=\frac{107.92}{39.854191}\ g/cm^3[/tex]

[tex]\rho=2.708\ g/cm^3[/tex]