Respuesta :

Answer:

DeBroglie wavelength is [tex]2.42\times 10^{-10}\ m[/tex]

Frequency is [tex]1.24\times 10^{16}\ Hz[/tex]

Explanation:

Mass of electron = 9.10938356 × 10⁻³¹ kg

Planck's constant = h = 6.626 × 10⁻³⁴ m²kg/s

Speed of light = c = 3×10⁸ m/s

[tex]\lambda=\frac{h}{p}=\frac{h}{mv}\\\Rightarrow \lambda=\frac{6.626\times 10^{-34}}{9.10938356\times 10^{-31}\times \frac{3\times 10^8}{100}}\\\Rightarrow \lambda=2.42\times 10^{-10}\ m[/tex]

DeBroglie wavelength is [tex]2.42\times 10^{-10}\ m[/tex]

[tex]v=f\lambda\\\Rightarrow f=\frac{v}{\lambda}\\\Rightarrow \frac{\frac{3\times 10^8}{100}}{2.42\times 10^{-10}}\\\Rightarrow f=1.24\times 10^{16}\ Hz[/tex]

Frequency is [tex]1.24\times 10^{16}\ Hz[/tex]

Answer:

[tex]\lambda=2.42\times 10^{-10}\ m[/tex]

[tex]\nu=1.24\times 10^{18}\ s^{-1}[/tex]

Explanation:

The expression for the deBroglie wavelength is:

[tex]\lambda=\frac {h}{m\times v}[/tex]

Where,

[tex]\lambda[/tex] is the deBroglie wavelength

h is Plank's constant having value [tex]6.626\times 10^{-34}\ Js[/tex]

m is the mass of electron having value [tex]9.11\times 10^{-31}\ kg[/tex]

v is the speed of electron.

Given that v = c / 100

Where, c is the speed of light having value [tex]3\times 10^8\ m/s[/tex]

Thus, v = [tex]\frac {3\times 10^8}{100}\ m/s=3\times 10^6\ m/s[/tex]

Applying in the equation as:

[tex]\lambda=\frac {h}{m\times v}[/tex]

[tex]\lambda=\frac {6.626\times 10^{-34}}{9.11\times 10^{-31}\times 3\times 10^6}\ m[/tex]

[tex]\lambda=\frac{10^{-34}\times \:6.626}{10^{-25}\times \:27.33}\ m[/tex]

[tex]\lambda=\frac{6.626}{10^9\times \:27.33}\ m[/tex]

[tex]\lambda=2.42\times 10^{-10}\ m[/tex]

Also,

[tex]\nu=\frac {c}{\lambda}[/tex]

So,

[tex]\nu=\frac {3\times 10^8}{2.42\times 10^{-10}}\ s^{-1}[/tex]

[tex]\nu=\frac{10^{18}\times \:3}{2.42}\ s^{-1}[/tex]

[tex]\nu=1.24\times 10^{18}\ s^{-1}[/tex]