A metal surface is illuminated with light of different wavelengths. It is observed that electrons are emitted from the metal for wavelengths of light up to 525 nm but for no wavelengths above 525 nm. When light of 420 nm is used, what is the maximum kinetic energy of the electrons?

Respuesta :

Answer:

[tex]K.E.=9.4657\times 10^{-20}\ J[/tex]

Explanation:

Using the expression for the photoelectric effect as:

[tex]E=h\nu_0+\frac {1}{2}\times m\times v^2[/tex]

Also, [tex]E=\frac {h\times c}{\lambda}[/tex]

[tex]\nu_0=\frac {c}{\lambda_0}[/tex]

Applying the equation as:

[tex]\frac {h\times c}{\lambda}=\frac {hc}{\lambda_0}+\frac {1}{2}\times m\times v^2[/tex]

Where,

h is Plank's constant having value [tex]6.626\times 10^{-34}\ Js[/tex]

c is the speed of light having value [tex]3\times 10^8\ m/s[/tex]

[tex]\lambda[/tex] is the wavelength of the light being bombarded

[tex]\lambda_0[/tex] is the threshold wavelength

[tex]\frac {1}{2}\times m\times v^2[/tex] is the kinetic energy of the electron emitted.

Given, [tex]\lambda=420\ nm=420\times 10^{-9}\ m[/tex]

[tex]\lambda_0=525\ nm=525\times 10^{-9}\ m[/tex]

Thus, applying values as:

[tex]\frac {6.626\times 10^{-34}\times 3\times 10^8}{420\times 10^{-9}}=\frac {6.626\times 10^{-34}\times 3\times 10^8}{525\times 10^{-9}}+K.E.[/tex]

[tex]K.E.=\frac {6.626\times 10^{-34}\times 3\times 10^8}{420\times 10^{-9}}-\frac {6.626\times 10^{-34}\times 3\times 10^8}{525\times 10^{-9}}[/tex]

[tex]K.E.=\frac{19.878}{10^{17}\times \:420}-\frac{19.878}{10^{17}\times \:525}[/tex]

[tex]K.E.=9.4657\times 10^{-20}\ J[/tex]