Respuesta :
Answer:
second displacement is R = 208.6 cm and θ = 346º
Explanation:
This is a problem of adding vectors, the easiest way to work these problems is to decompose the vectors and find the resulting vectors on each axis
Let's use trigonometry to break down each displacement vector. Let's start with vector 1 that has a magnitude m1 = 156 cm
sin 126 = Y1 / m1
Y1. = m1 without 126
Y1 = 156 without 126
Y1 = 126.2 cm
cos 126 = X1 / m1
X1 = m1 cos 126
X1 = 156 cos 126
X1 = - 91.69 cm
The resulting vector has R = 133 cm
sin 34 = Ry / R
Ry = R sin 34
Ry = 133 sin 34
Ry = 74.37 cm
cos 34 = Rx / R
Rx = R cos 34
Rx = 133 cos 34
Rx = 110.3 cm
We already have all the components, we can add algebraically on each axis
X axis
Rx = X1 + X2
X2 = Rx -X1
X2 = 110.3 - (-91.69)
X2 = 202 cm
Y Axis
Ry = Y1 + Y2
Y2 = Ry - Y1
Y2 = 74.37 -126.3
Y2 = -52 cm
Let's build the resulting vector
R = (202 i ^ + 52 y ^) cm
R = (202, -52) cm
We can also use the Pythagorean triangle and trigonometry to find the module and direction
R² = Rx² + Ry²
R = √(202² + 52²)
R = 208.6 cm
tan θ = Ry / Rx
tan θ = -52/202
θ = tan⁻¹ (-0.257)
θ = -14.4º
The negative sign indicates that it is measured from the x-axis clockwise, to measure counterclockwise from the x-axis
θ = 360-14
θ = 346º
Answer:
Explanation:
A = 156 cm at 126°
R = 133 cm at 34°
Let the second displacement is [tex]\overrightarrow{B}=B\widehat{i}+B\widehat{j}[/tex].
Write the displacements in the vector form.
[tex]\overrightarrow{A}=156\left ( Cos 126\widehat{i}+Sin126\widehat{j} \right )[/tex]
[tex]\overrightarrow{A}=-91.7\widehat{i}+126.2\widehat{j}[/tex]
[tex]\overrightarrow{R}=133\left ( Cos 34\widehat{i}+Sin34\widehat{j} \right )[/tex]
[tex]\overrightarrow{R}=110.3\widehat{i}+74.4\widehat{j}[/tex]
According to the vector sum
[tex]\overrightarrow{R}=\overrightarrow{A}+\overrightarrow{B}[/tex]
Substituting the values
[tex]110.3\widehat{i}+74.4\widehat{j} = -91.7\widehat{i}+126.2\widehat{j} + B\widehat{i}+B\widehat{j} [/tex]
[tex] B\widehat{i}+B\widehat{j} = 202\widehat{i} - 51.8\widehat{j}[tex]