Answer:
(a). The distance is 49.79 m.
(b). The speed of the ball is 24.39 m/s.
Explanation:
Given that,
Speed = 20 m/s
Angle = 40°
Height = 22 m
Time = 3.25 sec
(a). We need to calculate the distance
Using formula of distance
[tex]d=u\cos\theta\times t[/tex]
Put the value into the formula
[tex]d=20\cos40\times3.25[/tex]
[tex]d=49.79\ m[/tex]
(b). We need to calculate the horizontal velocity
Using formula of velocity
[tex]v_{x}=u\cos\theta[/tex]
Put the value into the formula
[tex]v_{x}=20\times\cos40[/tex]
[tex]v_{x}=15.3\ m/s[/tex]
We need to calculate the vertical velocity
Using equation of motion
[tex]v_{y}=u\sin\theta-gt[/tex]
Put the value into the formula
[tex]v_{y}=20\sin40-9.8\times3.25[/tex]
[tex]v_{y}=-19\ m/s[/tex]
Negative sign shows the opposite direction.
We need to calculate the speed of ball
Using formula of speed
[tex]v=\sqrt{v_{x}^2+v_{y}^2}[/tex]
[tex]v=\sqrt{(15.3)^2+(19)^2}[/tex]
[tex]v=24.39\ m/s[/tex]
Hence, (a). The distance is 49.79 m.
(b). The speed of the ball is 24.39 m/s.