Respuesta :

Answer:

The roots of [tex]\bold{\left(x^{2}+3 x-4\right)\left(x^{2}-4 x+29\right)}[/tex] is -4 and 1

Solution:

From question, given that [tex]\left(x^{2}+3 x-4\right)\left(x^{2}-4 x+29\right)[/tex]

To factorize the first expression that is [tex]\left(x^{2}+3 x-4\right)[/tex] ,follow the below steps:

[tex]\left(x^{2}+3 x-4\right)[/tex] ---- eqn (1)

“3x” can be rewritten as 4x-x. Now the above equation becomes,

[tex]=\left(x^{2}+4 x-x-4\right)[/tex]

By taking x as common from [tex]x^{2}+4 x \text { and }[/tex] -1 from -x-4 the above equation becomes,

=x (x+4) - 1(x+4)

=(x+4)(x-1)

Hence the factors of [tex]\left(x^{2}+3 x-4\right) \text { is }(x+4)(x-1)[/tex]    

so the roots of [tex]\left(x^{2}+3 x-4\right)[/tex] is -4 and 1.

Now to factorize the second expression that is [tex]\left(x^{2}-4 x+29\right)[/tex] ,follow the below steps:

[tex]\left(x^{2}+3 x-4\right)[/tex]  --- eqn (2)

Equation (2) cannot be factorized (imaginary roots)

Hence the roots of [tex]\left(x^{2}+3 x-4\right)\left(x^{2}-4 x+29\right)[/tex] is -4 and 1.