Apply the properties of integer exponents to identify all of the expressions equivalent to 1/8.
A. 2^-3 B. 2^3 C. 1/2^3 D. 2^2 x 2^-5 E. 2^-2 x 2^5

Respuesta :

Answer:

The answers are A , C , D

Step-by-step explanation:

Lets revise the rule of exponent

* [tex]a^{n}*a^{m}=a^{m+n}[/tex]

* [tex]\frac{a^{m}}{a^{n}}=a^{m-n}[/tex]

* [tex]\frac{1}{a^{-m}}=a^{m}[/tex]

* [tex](\frac{a}{b})^{-m}=(\frac{b}{b})^{m}[/tex]

Now lets solve the problem

We need all the expressions equivalent to [tex]\frac{1}{8}[/tex]

A.

∵ [tex]2^{-3}=\frac{1}{2^{3}}[/tex]

∵ 2³ = 8

∴ [tex]2^{-3}=\frac{1}{8}[/tex]

Answer A is equivalent to [tex]\frac{1}{8}[/tex]

B.

∵ 2³ = 8

Answer B is not equivalent to [tex]\frac{1}{8}[/tex]

C.

∵ 2³ = 8

∴ [tex]\frac{1}{2^{3}}=\frac{1}{8}[/tex]

Answer C is equivalent to [tex]\frac{1}{8}[/tex]

D.

∵ [tex]2^{2}*2^{-5}=2^{2+-5}=2^{-3}[/tex]

∵ [tex]2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}[/tex]

Answer D is equivalent to [tex]\frac{1}{8}[/tex]

E.

∵ [tex]2^{-2}*2^{5}=2^{-2+5}=2^{3}[/tex]

∵ 2³ = 8

Answer E is not equivalent to [tex]\frac{1}{8}[/tex]

The answers are A , C , D