Respuesta :

Answer:

The value of the exponential expression [tex]16^{\frac{1}{4}}[/tex] is 2  

Solution:

16 superscript one-fourth= [tex]16^{\frac{1}{4}}[/tex]

As per the problem,  

We have to find the value of [tex]16^{\frac{1}{4}}[/tex]  

16 in terms of 2 can be written as [tex]2\times2\times2\times2[/tex]

= [tex](2 \times 2 \times 2 \times 2)^{\frac{1}{4}}[/tex]

=[tex]\left(2^{4}\right)^{\frac{1}{4}}[/tex]

As per the exponential rule, [tex]a^{(m)^{n}}=a^{m \times n}[/tex]

=[tex]2^{4 \times \frac{1}{4}}[/tex]

Here, [tex]4\times\frac{1}{4}=1[/tex]

= [tex]2^{1}[/tex]

= 2

Hence, the value is 2.

Answer:

The value of the exponential expression 16^1/4 is 2  

Step-by-step explanation:

Reasons.