Respuesta :

Answer: 0.522 m

Explanation:

This situation is related to projectile motion, where the initial velocity of the car [tex]V_{o}=24.5 m/s[/tex] has only the horizontal component. This means the angle is equal to zero ([tex]\theta=0[/tex]). And the equations we will use to find the height [tex]y_{o}[/tex] of the cliff are:

[tex]y=y_{o}+V_{o}sen \theta t+\frac{1}{2}gt^{2}[/tex] (1)  

Where:  

[tex]y=0 m[/tex] is the final height of the car

[tex]y_{o}[/tex] is the initial height

[tex]V_{o}=24.5 m/s[/tex] is the initial velocity of the car

[tex]t[/tex] is the time

[tex]g=-9.8 m/s^{2}[/tex] is the acceleration due to gravity

[tex]\theta=0[/tex] is the angle

[tex]x=8 m[/tex] is the horizontal distance traveled by the car after passing the cliff

Well, firstly we have to find [tex]t[/tex]  from (1):

[tex]0=y_{o}+\frac{1}{2}gt^{2}[/tex] (3)  

[tex]t=\sqrt{-\frac{2y_{o}}{g}}[/tex] (4)  

Substituting (4) in (2):

[tex]x=V_{o}cos \theta (\sqrt{-\frac{2y_{o}}{g}})[/tex] (5)  

Isolating [tex]y_{o}[/tex]:

[tex]y_{o}=-\frac{x^{2} g}{2V_{o}^{2}}[/tex] (6)  

[tex]y_{o}=-\frac{(8m)^{2} (-9.8 m/s^{2})}{2(24.5)^{2}}[/tex] (7)  

Finally:

[tex]y_{o}=0.522 m[/tex]