Write an absolute value inequality that represents the situation. Then solve the inequality. The difference between the perimeters of the figures is less than or equal to 3.

Respuesta :

Answer:

All real numbers greater than or equal to 2.5 and less than or equal to 5.5

[tex]2.5 \leq x \leq 5.5[/tex]

Step-by-step explanation:

see the attached figure to better understand the problem

step 1

Find the perimeter of the square

The perimeter of the square is

[tex]P=4(b)[/tex]

where

b is the length side of the square

substitute the given value

[tex]P=4(x)=4x\ units[/tex]

step 2

Find the perimeter of rectangle

The perimeter of rectangle is

[tex]P=2(L+W)[/tex]

where

L is the length of rectangle

W is the width of rectangle

substitute the given values

[tex]P=2[(x+1)+3][/tex]

[tex]P=2[x+4][/tex]

[tex]P=(2x+8)\ units[/tex]

step 3

we know that

The difference between the perimeters of the figures is less than or equal to 3

Write an absolute value inequality that represents the situation

[tex]\left|4x-\left(2x+8\right)\right|\le 3[/tex]

[tex]\left|\left(2x-8\right)\right|\le3[/tex]

Solve the absolute value

First case (positive value)

[tex]+(2x-8)\le 3[/tex]

[tex]2x\le 3+8[/tex]

[tex]2x\le 11[/tex]

[tex]x\le 5.5[/tex]

The solution is the interval -----> (-∞,5.5]

Second case (negative value)

[tex]-(2x-8)\le 3[/tex]

Multiply by -1 both sides

[tex](2x-8)\ge -3[/tex]

[tex]2x\ge -3+8[/tex]

[tex]2x\ge 5[/tex]

[tex]x\ge 2.5[/tex]

The solution is the interval -----> [2.5,∞)

The solution of the absolute value for x is

[2.5,∞) ∩ (-∞,5.5] =[2.5,5.5]

[tex]2.5 \leq x \leq 5.5[/tex]

All real numbers greater than or equal to 2.5 and less than or equal to 5.5

Ver imagen calculista