Answer:
5.521 × 10⁻² mol/m².s
Explanation:
Given:
Pressure of the Methane and Helium gas = 101.32 kPa
Temperature of the Methane and Helium gas = 298 K
Partial pressure of Methane, pA₁ = 60.79 kPa
Partial pressure of Methane at point 0.02 m away, pA₂ = 20.26 kPa
Now,
Molar flux is given as:
[tex]J_A^* = -D_{AB} \times\frac{pA_2 - pA_1}{RT(z_2 - z_1)}[/tex]
Here,
[tex]D_{AB}[/tex]= 0.675 × 10⁻⁴ m²/s (for He-CH4 at 101.32 kPa and 298 K)
Z₂ - Z₁ = 0.02 m
R is the ideal gas constant = 8.314 J/mol.K
T is the temperature = 298 K
On substituting the respective values, we get
[tex]J_A^* = -0.675\times10^{-4} \times\frac{20.26 - 60.79}{8.314\times298(0.02)}[/tex]
or
= 5.521 × 10⁻² mol/m².s