Answer and Step-by-step explanation:
Given:
A, B and C are the pairwise disjoint sets
To prove:
|A + B+ C| = |A| +|B| +|C|
Proof:
Since, A, B and C are the pairwise disjoint sets, therefore all the possible pairs of A, B and C will also be disjoint and these are:
[tex]A\cap B = \phi[/tex];
[tex]A\cap C = \phi[/tex];
[tex]B\cap C = \phi[/tex];
[tex]|A\cap B| = 0[/tex];
[tex]|A\cap C|= 0[/tex];
[tex]|B\cap C| = 0[/tex];
Thus
[tex]A\cap B\cap C = \phi[/tex];
|A\cap B\cap C| = 0
Now, lets take an example:
Suppose, A = {b, c, d}
B = {e, f, g}
C = {h, i}
Now, we know that:
[tex]n|A\cup B\cup C| = n|A| + n|B| + n|C| - n(A\cap B) - n(A\cap C) - n(B\cap C) - n|A\cap B\cap C|[/tex]
[tex]|A\cup B\cup C| = {b, c, d, e, f, g, h, i}[/tex]
[tex]n|A\cup B\cup C| = 8[/tex]
[tex]n|A\cup B\cup C| = 3 + 3 + 2 = 8[/tex]
Thus
|A + B+ C| = |A| +|B| +|C|
Hence proved
Now, we know that:
[tex]|A\cup B\cup C| = |A| + |B| + |C| - (A\cap B) - (A\cap C) - (B\cap C) - |A\cap B\cap C|[/tex]
from the above established data, we can write that:
[tex]|A\cup B\cup C| = |A| +|B| +|C| - 0 - 0 - 0 - 0[/tex]
[tex]|A\cup B\cup C| = |A| +|B| +|C|[/tex]
Hence, proved