Let a, b, c, and d be real numbers with a, c 6= 0. Prove that the lines y = ax+b and y = cx + d have the same x-intercept if and only if ad = bc

Respuesta :

Step-by-step explanation:

We have got the lines :

[tex]y=ax+b\\y=cx+d[/tex]

Both lines intercept the x-axis in the point :

[tex]I = (i_{1} ,i_{2})[/tex]

In all point from x-axis the y-component is equal to 0.

[tex]I=(i_{1},o)[/tex]

We replace the I point in the lines equations:

[tex]0=a(i_{1})+b \\0=c(i_{1})+d[/tex]

From the first equation :

[tex]0=a(i_{1})+b \\-b=a(i_{1})\\i_{1}=\frac{-b}{a}[/tex]

From the second equation :

[tex]0=c(i_{1})+d\\ -d=c(i_{1})\\i_{1}=\frac{-d}{c}[/tex]

Then [tex]i_{1}=i_{1}[/tex]

Finally :

[tex]\frac{-b}{a}=\frac{-d}{c} \\\frac{b}{a}=\frac{d}{c} \\ad=bc[/tex]

y = ax + b and y = cx + d have the same x-intercept ⇔ad=bc