Respuesta :

frika

Answer:

See explanation

Step-by-step explanation:

1. BK is an angle B bisector, then

[tex]\angle ABK\cong \angle CBK[/tex] (definition of angle bisector)

2. BM = MK, then

triangle BMK is isosceles triangle with base BK.

3. Angles adjacent to the base of isosceles triangle are congruent, then

[tex]\angle MBK \cong \angle BKM[/tex]

Note that angle MBK is the same as angle CBK.

4. By substitution property,

[tex]\angle ABK \cong \angle BKM[/tex]

5. By alternate interior angles theorem,

if [tex]\angle ABK \cong \angle BKM[/tex], then [tex]AB\parallel KM[/tex]

Ver imagen frika