Answer:
x = 1.71 m
x = - 9.1068 m
Explanation:
from figure 1
[/tex]f_1 = f_2[/tex]
[tex]\frac{kqQ_1}{X^2} =\frac{kqQ_2}{(2.88-X)^2}[/tex]
[tex]\frac{Q_1}{X^2} =\frac{Q_2}{(2.88-X)^2}[/tex]
FROM DATA GIVEN
[tex]\frac{7.85}{x^2} = \frac{3.67}{(2.88-x)^2}[/tex]
solving for x we get
2.88 -x = 0.68375 x
x = 1.71 m
b) from figure 2
[tex]F_1 = F_2[/tex]
[tex]\frac{kqQ_1}{X^2} =\frac{kqQ_2}{(2.88 + X)^2}[/tex]
[tex]\frac{Q_1}{X^2} =\frac{Q_2}{(2.88 +X)^2}[/tex]
FROM DATA GIVEN [tex]\frac{7.85}{x^2} = \frac{3.67}{(2.88 + x)^2}[/tex]
solving for x we get
2.88 +x = 0.68375 x
x = - 9.1068 m