Respuesta :

Answer:

[tex]y(x)=6x-sin(x)[/tex]

Step-by-step explanation:

Rewrite the differential equation as:

[tex]\frac{d^{2} y }{dx^{2} } =sin(x)[/tex]

Integrate both sides with respect to x:

[tex]\int\ \frac{d^{2} y }{dx^{2} } dx = \int\ sin(x) dx[/tex]

[tex]\frac{dy}{dx} =-cos(x)+C_1[/tex]

Integrate one more time both sides with respect to x:

[tex]\int\ \frac{dy}{dx} = \int\ -cos(x)+C_1 dx[/tex]

[tex]y(x)=-sin(x)+C_1x+C_2[/tex]

Now that we find the solution, let's find its derivate:

[tex]y'(x)=C_1-cos(x)[/tex]

Evaluating the initial conditions:

[tex]y(0)=C_1(0)+C_2-sin(0)=0\\C_2=0[/tex]

[tex]y'(0)=C_1-cos(0)=5\\C_1=5+1=6[/tex]

Replacing the value of the constants that we found in the differential equation solution:

[tex]y(x)=6x-sin(x)[/tex]