Respuesta :

Answer:

[tex]0.45gH_{2}[/tex]

[tex]3.6gO_{2}[/tex]

Explanation:

The problem gives you the balanced reaction:

[tex]_{2}H_{2}O=_{2}H_{2}+_{2}O_{2}[/tex]

To calculate the mass formed of each product you need to have the molar mass of reactant and products, so:

molar mass of [tex]H_{2}[/tex] = [tex]2\frac{g}{mol}[/tex]

molar mass of [tex]O_{2}[/tex] = [tex]32\frac{g}{mol}[/tex]

molar mass of [tex]H_{2}O[/tex] = [tex]18\frac{g}{mol}[/tex]

Then you should use the stoichiometry to make the relationships between the moles of products and the reactant:

- For [tex]H_{2}[/tex]:

[tex]4.05gH_{2}O*\frac{1molH_{2}O}{18gH_{2}O}*\frac{2molesH_{2}}{2molesH_{2}O}*\frac{2gH_{2}}{1molH_{2}}=0.45gH_{2}[/tex]

-For [tex]O_{2}[/tex]:

[tex]4.05gH_{2}O*\frac{1molH_{2}O}{18gH_{2}O}*\frac{1molO_{2}}{2molesH_{2}O}*\frac{32gO_{2}}{1molO_{2}}=3.6gO_{2}[/tex]