Answer:
0.69 psi/ft
Explanation:
speed of sound at depth of 13500 ft = 10000 ft/sec
normal speed of sound at 13500 ft = 12000 ft/sec
time taken to travel at 10000 ft/s (t) =[tex]\dfrac{1}{10000}sec[/tex]
time taken to travel at 12000 ft/s(t n) =[tex]\dfrac{1}{12000}sec[/tex]
assume overburden stress gradient = S/D = 1 psi/ft
normal pore pressure gradient = [tex](\dfrac{P}{D})_n[/tex]= 0.465 psi/ft
using imperical formula
[tex]\dfrac{P}{D} = \dfrac{S}{D} - [\dfrac{S}{D}-(\dfrac{P}{D})_n] (\dfrac{\Delta t_n}{\Delta t})^3[/tex]
= [tex]1 - [ 1- .465](\dfrac{10000}{12000})^3[/tex]
= 0.69 psi/ft
Pore pressure = 0.69 psi/ft