Respuesta :
Answer:
[tex]1\pm \sqrt{19}i[/tex]
Step-by-step explanation:
To solve : [tex]x^2-2x+20=0[/tex]
Quadratic Formula :
For quadratic equation of form [tex]ax^2+bx+c=0[/tex], roots are given by
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
On comparing equation [tex]x^2-2x+20=0[/tex] with equation [tex]ax^2+bx+c=0[/tex], we get [tex]a=1\,,\,b=-2\,,\,c=20[/tex]
Also, we know that [tex]\sqrt{-1}=i[/tex]
So,
[tex]x=\frac{2\pm \sqrt{4-80}}{2}=\frac{2\pm \sqrt{-76}}{2}=\frac{2\pm 2\sqrt{19}i}{2}=1\pm \sqrt{19}i[/tex]