Respuesta :
Answer:
[tex]y=4-\frac{x}{2}[/tex]
Step-by-step explanation:
Find the coordinates of point A and point B
Looking at the graph
we have the points
A(8,0) and B(-4,6)
step 1
Find the slope m
The formula to calculate the slope between two points is equal to
[tex]m=\frac{y2-y1}{x2-x1}[/tex]
substitute the values
[tex]m=\frac{6-0}{-4-8}[/tex]
[tex]m=\frac{6}{-12}[/tex]
[tex]m=-\frac{1}{2}[/tex]
step 2
Find the equation in point slope form
[tex]y-y1=m(x-x1)[/tex]
we have
[tex]m=-\frac{1}{2}[/tex]
[tex]point\ A(8,0)[/tex]
substitute
[tex]y-0=-\frac{1}{2}(x-8)[/tex]
Convert to slope intercept form
[tex]y=mx+b[/tex]
Distribute in the right side
[tex]y=-\frac{1}{2}x+4[/tex]
rewrite
[tex]y=4-\frac{1}{2}x[/tex] -----> [tex]y=4-\frac{x}{2}[/tex]
Answer:
The correct option is B) [tex]y=4-\frac{x}{2}[/tex]
Step-by-step explanation:
Consider the provided graph.
The coordinates of A is (8,0)
The coordinates of B is (-4,6)
First find the slope of the line by using the formula: [tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]
Substitute the respective values in the above formula.
[tex]m=\frac{6-0}{-4-8}[/tex]
[tex]m=\frac{6}{-12}[/tex]
[tex]m=-\frac{1}{2}[/tex]
Hence, the slope is [tex]-\frac{1}{2}[/tex]
Now consider the graph, from the graph we know the y intercept of the line is (0,4).
The slope intercept form is: [tex]y=mx+c[/tex]
Where, m is the slope of line and c is the y intercept.
Substitute [tex]m=-\frac{1}{2}[/tex] and c=4 in slope intercept formula.
[tex]y=-\frac{1}{2}x+4[/tex]
[tex]y=4-\frac{x}{2}[/tex]
Hence, the correct option is B) [tex]y=4-\frac{x}{2}[/tex]