For each of the following, use logic laws to decide whether the statement is a tautology contradiction, or neither. a (a) (A B) A (B A) (b) (PP) AP

Respuesta :

Answer:

The statement [tex](A\rightarrow \lnot B)\land (B\rightarrow A)[/tex] is a contingency.

The statement [tex](P\rightarrow \lnot P)\land P[/tex] is a contradiction.

Step-by-step explanation:

A tautology is a proposition that is always true.

A contradiction is a proposition that is always false.

A contingency is a proposition that is neither a tautology nor a contradiction.

a) To classify the statement [tex](A\rightarrow \lnot B)\land (B\rightarrow A)[/tex], you need to use the logic laws as follows:

[tex](A\rightarrow \lnot B)\land (B\rightarrow A) \equiv[/tex]

[tex]\equiv (\lnot A \lor\lnot B)\land(\lnot B \lor A)[/tex] by the logical equivalence involving conditional statement.

[tex]\equiv (\lnot B\lor \lnot A )\land(\lnot B \lor A)[/tex] by the Commutative law.

[tex]\equiv \lnot B \lor (\lnot A \land A)[/tex] by Distributive law.

[tex]\equiv \lnot B \lor (A \land \lnot A)[/tex] by the Commutative law.

[tex]\equiv \lnot B \lor F[/tex] by the Negation law.

Therefore the statement [tex](A\rightarrow \lnot B)\land (B\rightarrow A)[/tex] is a contingency.

b) To classify the statement [tex](P\rightarrow \lnot P)\land P[/tex], you need to use the logic laws as follows:

[tex](P\rightarrow \lnot P)\land P \equiv[/tex]

[tex]\equiv (\lnot P \lor \lnot P)\land P[/tex] by the logical equivalence involving conditional statement.

[tex]\equiv P \land (\lnot P \lor \lnot P)[/tex] by the Commutative law.

[tex]\equiv (P \land \lnot P) \lor (P \land \lnot P)[/tex] by Distributive law.

[tex]\equiv F \lor F \equiv F[/tex] by the Negation law.

Therefore the statement [tex](P\rightarrow \lnot P)\land P[/tex] is a contradiction.

Ver imagen franciscocruz28