Respuesta :

Answer:

see explanation

Step-by-step explanation:

The equation of a parabola in vertex form is

y = a(x - h)² + k

where (h, k) are the coordinates of the vertex and a is a multiplier

Here (h, k) = (2, 1), thus

y = a(x - 2)² + 1

To find a substitute (0, 7) into the equation

7 = a(0 - 2)² + 1

7 = 4a + 1 ( subtract 1 from both sides )

6 = 4a ( divide both sides by 4 )

a = [tex]\frac{3}{2}[/tex]

y = [tex]\frac{3}{2}[/tex](x - 2)² + 1 ← in vertex form

Expand and simplify

y = [tex]\frac{3}{2}[/tex](x² - 4x + 4) + 1

  = [tex]\frac{3}{2}[/tex] x² - 6x + 6x + 1

y = [tex]\frac{3}{2}[/tex] x² - 6x + 7 ← in standard form