contestada

Please Explain
Given the formula for an arithmetic sequence f(6) = f(5) + 3 written using a recursive formula, write the sequence using an arithmetic formula.


f(6) = f(1) + 3

f(6) = f(1) + 12

f(6) = f(1) + 15

f(6) = f(1) + 18

Respuesta :

Answer:

f(6)=f(1)+15

Step-by-step explanation:

Ok if f(6)-f(5)=3, then f(n)-f(n-1)=3 for any integer n greater than or equal to 2.

f(6)-f(1)

=(f(6)-f(5))+(f(5)-f(4))+(f(4)-f(3))+(f(3)-f(2))+(f(2)-f(1))

=(3)         + (3)         +(3)         +(3)         +(3)

=5(3)

=15

So the answer is the third one:

f(6)=f(1)+15

Arithmetic sequences are linear.

So no matter the points we choose, we should get the same slope.

[tex]\frac{f(6)-f(5)}{6-5}=\frac{f(6)-f(1)}{6-1}=3[/tex]

Both slopes are 3 since we were given term-previous term is 3.

[tex]\frac{f(6)-f(1)}{6-1}=3[/tex]

[tex]\frac{f(6)-f(1)}{5}=3[/tex]

Multiply both sides by 5:

[tex]f(6)-f(1)=5(3)[/tex]

[tex]f(6)-f(1)=15[/tex]

[tex]f(6)=f(1)+15[/tex]