Answer:
The inverse relation is:
[tex]y=4 \pm \sqrt{x}[/tex]
Step-by-step explanation:
We need to solve for x.
Useful formula: (x-y)^2=x^2-2xy+y^2.
[tex]y=x^2-8x+16[/tex]
[tex]y=(x-4)^2[/tex]
Now, take the square root of both sides:
[tex]\pm \sqrt{y}=x-4[/tex]
Add 4 on both sides:
[tex]4 \pm \sqrt{y}=x[/tex]
Interchange x and y:
[tex]4 \pm \sqrt{x}=y[/tex]
The inverse relation is:
[tex]y=4 \pm \sqrt{x}[/tex]