Answer:
d=336.16km=208.92mi
Explanation:
First write the data in the international system:
[tex]v_1=67.1mph*\frac{1609m}{1mile}*\frac{1km}{1000m} = 107.96kmph[/tex]
similarly:
[tex]v_2=67.1mph*\frac{1609m}{1mile}*\frac{1km}{1000m} = 89.78kmph[/tex]
Then, just calculate distance using the equation for linear motion:
[tex]v=\frac{d}{t}\\ d=v*t\\d_1=107.96*1.7=183.53km\\d_2=89.78*1.7=152.6km\\d_T=d_1+d_2\\d_T=336.16km[/tex]