Solve the system of equations by finding the reduced row echelon form of the augmented matrix. Write the solutions for x and y in terms of z comma where z can be any number. StartLayout left-brace 1st Row 1st Column 3 x plus y plus 4 z 2nd Column equals 3rd Column -3 2nd Row 1st Column negative x plus y plus 4 z 2nd Column equals 3rd Column 17 EndLayout

Respuesta :

Answer:

The solutions for the given system of equations are:

[tex]\left \{ {{x=-5} \atop {y=12-4z}} \right.[/tex]

Step-by-step explanation:

Given the equation system:

[tex]\left \{ {{3x+y+4z=-3} \atop {-x+y+4z=17}} \right.[/tex]

We obtain the following matrix:

[tex]\left[\begin{array}{cccc}3&1&4&-3\\-1&1&4&17\end{array}\right][/tex]

Step 1: Multiply the fisrt row by 1/3.

[tex]\left[\begin{array}{cccc}1&\frac{1}{3} &\frac{4}{3}&-1\\-1&1&4&17\end{array}\right][/tex]

Step 2: Sum the first row and the second row.

[tex]\left[\begin{array}{cccc}1&\frac{1}{3} &\frac{4}{3}&-1\\0&\frac{4}{3} &\frac{16}{3}&16\end{array}\right][/tex]

Step 3: Multiply the second row by 3/4.

[tex]\left[\begin{array}{cccc}1&\frac{1}{3} &\frac{4}{3}&-1\\0&1 &4&12\end{array}\right][/tex]

Step 4: Multiply the second row by -1/3 and sum the the first row.

[tex]\left[\begin{array}{cccc}1&0 &0&-5\\0&1 &4&12\end{array}\right][/tex]

The result of the reduced matrix is:

[tex]\left \{ {{x=-5} \atop {y+4z=12}} \right.[/tex]

This is equal to:

[tex]\left \{ {{x=-5} \atop {y=12-4z}} \right.[/tex]

These are the solutions for the system of equations in terms of z, where z can be any number.