Respuesta :

Answer: 0.333 h

Explanation:

This problem can be solved using the Radioactive Half Life Formula:  

[tex]A=A_{o}.2^{\frac{-t}{H}}[/tex] (1)  

Where:  

[tex]A=0.375 g[/tex] is the final amount of the material  

[tex]A_{o}=3 g[/tex] is the initial amount of the material  

[tex]t=1 h[/tex] is the time elapsed  

[tex]H[/tex] is the half life of the material (the quantity we are asked to find)  

Knowing this, let's substitute the values and find [tex]h[/tex] from (1):

[tex]0.375 g=(3 g)2^{\frac{-1h}{H}}[/tex] (2)  

[tex]\frac{0.375 g}{3 g}=2^{\frac{-1h}{H}}[/tex] (3)  

Applying natural logarithm in both sides:

[tex]ln(\frac{0.375 g}{3 g})=ln(2^{\frac{-1 h}{H}})[/tex] (4)  

[tex]-2.079=-\frac{1 h}{H}ln(2)[/tex] (5)  

Clearing [tex]H[/tex]:

[tex]H=\frac{-1h}{-2.079}(0.693)[/tex] (6)  

Finally:

[tex]h=0.333 h[/tex] This is the half-life of the Bismuth-218 isotope