Answer:
a)V=17.76 cm/s
b)V=22.44 cm/s
c)V=50.49 cm/s
d)V=35.06 cm/s
e)V=37.63 cm/s
Explanation:
Given that
[tex]x=9.16+1.87t^3[/tex]
a)
When t= 2 s
[tex]x_1=9.16+1.87\times 2^3[/tex]
[tex]x_1=24.12\ cm[/tex]
When t= 3 s
[tex]x_2=9.16+1.87\times 3^3[/tex]
[tex]x_2=59.65\ cm[/tex]
So the average velocity V
[tex]V=\dfrac{x_2-x_1 }{t_2-t_1}[/tex]
[tex]V=\dfrac{59.65- 24.12}{3-1}[/tex]
V=17.76 cm/s
b)
When know that
[tex]V=\dfrac{dx }{dt}[/tex]
So
[tex]\dfrac{dx }{dt}=3\times 1.87t^2[/tex]
When t= 2 s
[tex]V=3\times 1.87\times 2^2[/tex]
V=22.44 cm/s
c)
At t= 3 s
[tex]V=3\times 1.87\times 3^2[/tex]
V=50.49 cm/s
d)
At t= 2.5 s
[tex]V=3\times 1.87\times 2.5^2[/tex]
V=35.06 cm/s
e)
At t= 2 s ,x=24.12 cm
At t=3 s x=59.65 cm
So midway of 24.12 cm and 59.65 cm is (24.12+59.65 )/2=41.88 cm
So when x=41.88 cm
[tex]x=9.16+1.87t^3[/tex]
[tex]41.88=9.16+1.87t^3[/tex]
t=2.59 s
So velocity
[tex]V=3\times 1.87t^2[/tex]
[tex]V=3\times 1.87\times 2.59^2[/tex]
V=37.63 cm/s