Respuesta :
Answer:
0.7
Step-by-step explanation:
Let A and B be the events
A = the motorist encountered a red light at the 1st intersection
B = the motorist encountered a red light at the 2nd intersection
Then we have
[tex] P(A) = 0.4 [/tex]
[tex] P(B|A) = 0.7 \; (P(B) \; given \; A \; occurred) [/tex]
[tex] P(B|A^c) = 0.2 \; ( where\; A^c \; is \; the \; complement \; of \; A)[/tex]
We want to find P(A|B), the probability that A occurred given that B occurred.
Using Bayes' Theorem we have
[tex]P(A|B)=\frac{P(B|A)P(B)}{P(B|A)P(B)+P(B|A^c)P(A^c)}[/tex]
So,
[tex]P(A|B)=\frac{0.7P(B)}{0.7P(B)+0.2(1-P(A))}=\frac{0.7P(B)}{0.7P(B)+0.12}[/tex]
and we just need to find P(B)
But
[tex]0.7=P(B|A)=\frac{P(B\cap A)}{P(A)}=\frac{P(B\cap A)}{0.4}\Rightarrow P(B\cap A)=0.28[/tex]
and
[tex]0.2=P(B|A^c)=\frac{P(B\cap A^c)}{P(A^c)}=\frac{P(B\cap A^c)}{0.6}\Rightarrow P(B\cap A^c)=0.12[/tex]
Since
[tex](A\cap B)\cap (A\cap B^c)=\emptyset \;and\;(A\cap B)\cup (A\cap B^c)=B[/tex]
We have
[tex]P(B)=P(A\cap B)+P(A\cap B^c)=0.12+0.28=0.4[/tex]
and finally,
[tex]P(A|B)=\frac{0.7P(B)}{0.7P(B)+0.12}=\frac{0.7*0.4}{0.7*0.4+0.12}=\frac{0.28}{0.4}[/tex]
[tex]\boxed{P(A|B)=0.7}[/tex]