Three couples and two single individuals have been invited to an investment seminar and have agreed to attend. Suppose the probability that any particular couple or individual arrives late is 0.43 (a couple will travel together in the same vehicle, so either both people will be on time or else both will arrive late). Assume that different couples and individuals are on time or late independently of one another. Let X = the number of people who arrive late for the seminar.(a) Determine the probability mass function of X. [Hint: label the three couples #1, #2, and #3 and the two individuals #4 and #5.] (Round your answers to four decimal places.)x P(X = x)012345678(b) Obtain the cumulative distribution function of X. (Round your answers to four decimal places.)x F(x)012345678

Respuesta :

Answer:

(a) Probability mass function

P(X=0) = 0.0602

P(X=1) = 0.0908

P(X=2) = 0.1704

P(X=3) = 0.2055

P(X=4) = 0.1285

P(X=5) = 0.1550

P(X=6) = 0.1427

P(X=7) = 0.0390

P(X=8) = 0.0147

NOTE: the sum of the probabilities gives 1.0068 for rounding errors. It can be divided by 1.0068 to get the adjusted values.

(b) Cumulative distribution function of X

F(X=0) = 0.0602

F(X=1) = 0.1510

F(X=2) = 0.3214

F(X=3) = 0.5269

F(X=4) = 0.6554

F(X=5) = 0.8104

F(X=6) = 0.9531

F(X=7) = 0.9921

F(X=8) = 1.0068

Step-by-step explanation:

Let X be the number of people who arrive late to the seminar, we can assess that X can take values from 0 (everybody on time) to 8 (everybody late).

For X=0

This happens when every couple and the singles are on time (ot).

[tex]P(X=0)=P(\#1=ot)*P(\#2=ot)*P(\#3=ot)*P(\#4=ot)*P(\#5=ot)\\\\P(X=0)=(1-0.43)^{5}=0.57^5= 0.0602[/tex]

For X=1

This happens when only one single arrives late. It can be #4 or #5. As the probabilities are the same (P(#4=late)=P(#5=late)), we can multiply by 2 the former probability:

[tex]P(X=1) = P(\#4=late)+P(\#5=late)=2*P(\#4=late)\\\\P(X=1) = 2*P(\#1=ot)*P(\#2=ot)*P(\#3=ot)*P(\#4=late)*P(\#5=ot)\\\\P(X=1) = 2*0.57*0.57*0.57*0.43*0.57\\\\P(X=1) = 2*0.57^4*0.43=2*0.0454=0.0908[/tex]

For X=2

This happens when

1) Only one of the three couples is late, and the others cooples and singles are on time.

2) When both singles are late , and the couples are on time.

[tex]P(X=2)=3*(P(\#1=l)*P(\#2=ot)*P(\#3=ot)*P(\#4=ot)*P(\#5=ot))+P(\#1=ot)*P(\#2=ot)*P(\#3=ot)*P(\#4=l)*P(\#5=l)\\\\P(X=2)=3*(0.43*0.57^4)+(0.43^2*0.57^3)=0.1362+0.0342=0.1704[/tex]

For X=3

This happens when

1) Only one couple (3 posibilities) and one single are late (2 posibilities). This means there are 3*2=6 combinations of this.

[tex]P(X=3)=6*(P(\#1=l)*P(\#2=ot)*P(\#3=ot)*P(\#4=l)*P(\#5=ot))\\\\P(X=3)=6*(0.43^2*0.57^3)=6*0.342=0.2055[/tex]

For X=4

This happens when

1) Only two couples are late. There are 3 combinations of these.

2) Only one couple and both singles are late. Only one combination of these situation.

[tex]P(X=4)=3*(P(\#1=l)*P(\#2=l)*P(\#3=ot)*P(\#4=ot)*P(\#5=ot))+P(\#1=l)*P(\#2=ot)*P(\#3=ot)*P(\#4=l)*P(\#5=l)\\\\P(X=4)=3*(0.43^2*0.57^3)+(0.43^3*0.57^2)\\\\P(X=4)=3*0.0342+ 0.0258=0.1027+0.0258=0.1285[/tex]

For X=5

This happens when

1) Only two couples (3 combinations) and one single are late (2 combinations). There are 6 combinations.

[tex]P(X=6)=6*(P(\#1=l)*P(\#2=l)*P(\#3=ot)*P(\#4=l)*P(\#5=ot))\\\\P(X=6)=6*(0.43^3*0.57^2)=6*0.0258=0.1550[/tex]

For X=6

This happens when

1) Only the three couples are late (1 combination)

2) Only two couples (3 combinations) and one single (2 combinations) are late

[tex]P(X=6)=P(\#1=l)*P(\#2=l)*P(\#3=l)*P(\#4=ot)*P(\#5=ot)+6*(P(\#1=l)*P(\#2=l)*P(\#3=ot)*P(\#4=l)*P(\#5=ot))\\\\P(X=6)=(0.43^3*0.57^2)+6*(0.43^4*0.57)\\\\P(X=6)=0.0258+6*0.0195=0.0258+0.1169=0.1427[/tex]

For X=7

This happens when

1) Only one of the singles is on time (2 combinations)

[tex]P(X=7)=2*P(\#1=l)*P(\#2=l)*P(\#3=l)*P(\#4=l)*P(\#5=ot)\\\\P(X=7)=2*0.43^4*0.57=0.0390[/tex]

For X=8

This happens when everybody is late

[tex]P(X=8)=P(\#1=l)*P(\#2=l)*P(\#3=l)*P(\#4=l)*P(\#5=l)\\\\P(X=8) = 0.43^5=0.0147[/tex]