Respuesta :

Answer:

The perimeter is about 16.94 units.

Step-by-step explanation:

we know that

The perimeter of the polygon is the sum of its length sides

so

[tex]P=AB+BC+CD+DE+EF+FA[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

step 1

Find the distance AB

A(0,4),B(2,0)

substitute in the formula

[tex]d=\sqrt{(0-4)^{2}+(2-0)^{2}}[/tex]

[tex]dAB=\sqrt{20}=4.47\ units[/tex]

step 2

Find the distance BC

B(2,0),C(2,-2)

substitute in the formula

[tex]d=\sqrt{(-2-0)^{2}+(2-2)^{2}}[/tex]

[tex]dBC=2\ units[/tex]

step 3

Find the distance CD

C(2,-2),D(0,-2)

substitute in the formula

[tex]d=\sqrt{(-2+2)^{2}+(0-2)^{2}}[/tex]

[tex]dCD=2\ units[/tex]

step 4

Find the distance DE

D(0,-2),E(-2,2)

substitute in the formula

[tex]d=\sqrt{(2+2)^{2}+(-2-0)^{2}}[/tex]

[tex]dDE=\sqrt{20}=4.47\ units[/tex]

step 5

Find the distance EF

E(-2,2),F(-2,4)

substitute in the formula

[tex]d=\sqrt{(4-2)^{2}+(-2+2)^{2}}[/tex]

[tex]dE.F=2\ units[/tex]

step 6

Find the  distance FA

F(-2,4),A(0,4)

substitute in the formula

[tex]d=\sqrt{(4-4)^{2}+(0+2)^{2}}[/tex]

[tex]dFA=2\ units[/tex]

step 7

Find the perimeter

[tex]P=4.47+2+2+4.47+2+2=16.94\ units[/tex]