Find equations of the line that is parallel to the z-axis and passes through the midpoint between the two points (0, −3, 7) and (−2, 4, 1).

Respuesta :

Answer:

[tex]\vec{r}(t)=\left<-1,\frac{1}{2},4+t\right>[/tex]

In parametric form:

[tex]x=-1, y=\displaystyle\frac{1}{2}, z=4+t[/tex]

Step-by-step explanation:

We first find the mid point:

[tex]\displaystyle\left(\frac{0+(-2)}{2},\frac{-3+4}{2},\frac{7+1}{2}\right)=\left(-1,\frac{1}{2},4\right)[/tex]

Then, a vector parallel to the z-axis is:

[tex]\vec{v}=\left< 0,0,1 \right>[/tex]

Then remember the equation of  a line passing through point [tex](x_o,y_o,z_o)[/tex] and parallel to the vector [tex]\vec{v}=\left<a,b,c\right>[/tex] is:

[tex]\vec{r}(t)=\left<x_o,y_o,z_o\right>+t\left<a,b,c\right>[/tex]

So, in this problem we get:

[tex]\vec{r}(t)=\left<-1,\frac{1}{2},4\right>+t\left<0,0,1\right>[/tex]

After combining the two vectors:

[tex]\vec{r}(t)=\left<-1,\frac{1}{2},4+t\right>[/tex]

In parametric form:

[tex]x=-1, y=\displaystyle\frac{1}{2}, z=4+t[/tex]