In the Bohr theory of the hydrogen atom, an electron moves in a circular orbit about a proton, where the radius of the orbit is approximately 0.522 ✕ 10-10 m. (The actual value is 0.529 ✕ 10-10 m.) (a) Find the magnitude of the electric force exerted on each particle.
(b) If this force causes the centripetal acceleration of the electron, what is the speed of the electron?

Respuesta :

Answer:

a) [tex]8.5\times 10^{-8}[/tex] N

b) [tex] 2.2\times 10^{6}[/tex] m/s

Explanation:

a)

[tex]r[/tex] = radius of the orbit = 0.522 x 10⁻¹⁰ m

[tex]q[/tex] = magnitude of charge on each proton and electron = 1.6 x 10⁻¹⁹ C

Using coulomb's law , magnitude of electric force on the particle is given as

[tex]F = \frac{k q^{2} }{r^{2} }[/tex]

[tex]F = \frac{(9\times 10^{9})(1.6\times 10^{-19})^{2}}{(0.522\times 10^{-10})^{2}}[/tex]

[tex]F = 8.5\times 10^{-8}[/tex] N

b)

[tex]m[/tex] = mass of electron = 9.1 x 10⁻³¹ kg

[tex]v[/tex] = speed of electron = ?

Centripetal force is being provided by the electric force, hence

Centripetal force = electric force

[tex]\frac{mv^{2}}{r} = F[/tex]

[tex]\frac{(9.1\times 10^{-31})v^{2}}{0.522\times 10^{-10}} = 8.5\times 10^{-8}[/tex]

[tex]v = 2.2\times 10^{6}[/tex] m/s