A plane rises from​ take-off and flies at an angle of 9 degrees with the horizontal runway. When it has gained 500 ​feet, find the​ distance, to the nearest​ foot, the plane has flown. An airplane is at vertex B of a right triangle that has a horizontal side A C, a vertical side B C of length 500 feet, and a dashed hypotenuse A B of unknown length c that rises from left to right. Angle C is the right angle and angle A measures 9 degrees. 9 degrees

Respuesta :

Answer:

The dashed hypotenuse measures: 3,205.13 ft.

Step-by-step explanation:

                                                               . B  (Plane is here)

                                        .                      .        

                     .                                         .      

A  .       .          .        .          .          .        . C

BC = 500 ft

Angle (Ф) between AB and AC = 9 degrees

So,

Sin(Ф) = BC/AB

Since we need to know how much hypotenuse AB measures, Let's isolate it from the equation:

AB = BC / Sin (Ф)

AB = 500 ft. / Sin (9)

AB = 500 ft./ 0.156

AB = 3,205.13 ft.