Find an equation of the line passing through the point (-4,6) that is perpendicular to the line y=7/2x+5. Work please.

Find an equation of the line passing through the point 46 that is perpendicular to the line y72x5 Work please class=

Respuesta :

Answer:

y = [tex]-\frac{2}{7}[/tex]x + 4[tex]\frac{6}{7}[/tex]

Step-by-step explanation:

We are to find the equation of line 1 which passes through point (-4,6)

Line 1 is perpendicular to line 2.

The equation of line 2 is; y = [tex]\frac{7}{2}[/tex]x + 5

The slope of line 2 is  [tex]\frac{7}{2}[/tex]

Because the product of two perpendicular line is -1;

The slope of line 1 is -1 ÷  [tex]\frac{7}{2}[/tex] =  [tex]\frac{-2}{7}[/tex]

Taking another point (x,y) on line 1;

Slope = change in y ÷ change in x

[tex]\frac{-2}{7}[/tex] = [tex]\frac{y - 6}{x - -4}[/tex]

y - 6 =  [tex]\frac{-2}{7}[/tex](x + 4)

y - 6 =  [tex]\frac{-2}{7}[/tex]x - [tex]\frac{8}{7}[/tex]

y =  [tex]\frac{-2}{7}[/tex] - [tex]\frac{8}{7}[/tex] + 6

y = [tex]-\frac{2}{7}[/tex]x + 4[tex]\frac{6}{7}[/tex]