Consider the function f(x) = 20/√x and its second-degree polynomial P2 (x) = 20 - 10(x-1) + 7.5(x-1)^2 at x=0.8. Compute the value of f(0.8) and P2 (0.8). Round your answer to four decimal places.(A) f(08) = 22.3607 P2(0.8) = 44.6000(B) f(08) = 22.3607 P2(0.8) = 22.3000(C) f(08) = 45.7214 P2(0.8) = 45.6000(D) f(08) = 21.3607 P2(0.8) = 21.3000(E) f(08) = 23.3607 P2(0.8) = 22.3000

Respuesta :

Answer:

[tex]f (0.8) = 22.3607[/tex] and [tex]P_{2} (0.8) = 22.300[/tex].

Step-by-step explanation:

According to the statement, [tex]f (x) = \frac{20}{\sqrt{x}}[/tex]  and  [tex]P_{2}(x) = 20 - 10 (x-1) + 7.5 (x-1) ^ 2[/tex]. Based on these definitions, at [tex]x=0.8[/tex] produce:

[tex]f (0.8) = \frac{20}{\sqrt {0.8}} = 22.3607[/tex].  On the other hand, you have to:

[tex]P_{2} (0.8) = 20 - 10 (0.8 -1) +7.5 (0.8 -1)^2[/tex]

[tex]P_{2} (0.8) = 20 - 10 (-0.2) +7.5 (-0.2)^2 = 22.300[/tex]

Then, it can be affirmed that [tex]f (0.8) = 22.3607[/tex] and [tex]P_{2} (0.8) = 22.300[/tex].